Научная статья УДК 66.091.1:(546.681+546.682)'161 DOI: 10.37102/0869-7698_2023_232_06_4 EDN: FOZPOR

Новый метод получения кубических фторидных пирохлоров индия(III) и галлия(III)

Р.Л. Давидович 🖾, В.Б. Логвинова, Е.Б. Меркулов, Е.И. Войт

Рувен Лейзерович Давидович доктор химических наук, профессор, главный научный сотрудник Институт химии ДВО РАН, Владивосток, Россия davidovich@ich.dvo.ru, ruven.davidovich@gmail.com http://orcid.org/0000-0002-8473-3580

Вера Богдановна Логвинова кандидат химических наук, научный сотрудник Институт химии ДВО РАН, Владивосток, Россия, logvinova@ich.dvo.ru, https://orcid.org/0009-0002-2162-8326

Евгений Борисович Меркулов кандидат химических наук, старший научный сотрудник Институт химии ДВО РАН, Владивосток, Россия merkulov@ich.dvo.ru https://orcid.org/0000-0001-9698-5454

Елена Ивановна Войт кандидат химических наук, старший научный сотрудник Институт химии ДВО РАН, Владивосток, Россия evoit@ich.dvo.ru https://orcid.org/0000-0002-3709-2944

Аннотация. Разработан новый простой метод получения кубических фторидных пирохлоров индия(III) и галлия(III), основанный на применении в качестве прекурсоров впервые синтезированных комплексных фторидов $Cs[Cu(H_2O)_4]InF_6$ и $Cs[Cu(H_2O)_4]GaF_6$ и их дегидратации в статической атмосфере воздуха в интервале температур 20–160 °C в течение 25–30 мин. Разработанный метод имеет значительные преимущества по сравнению с существующими методами получения фторидных пирохлоров, использующими твердофазные реакции исходных компонентов с одновременным их фторированием газообразным F_2 при 450–600 °C в течение 6–10 ч или взаимодействие соответствующей смеси компонентов в запаянных серебряных, платиновых или золотых трубках в интервале температур 600–1000 °C в течение 8–10 дней с последующим закаливанием.

[©] Давидович Р.Л., Логвинова В.Б., Меркулов Е.Б., Войт Е.И., 2023

- *Ключевые слова:* фторидный пирохлор, метод получения, комплексные фториды, индий(III), галлий(III), дегидратация, прекурсор
- Для цитирования: Давидович Р.Л., Логвинова В.Б., Меркулов Е.Б., Войт Е.И. Новый метод получения кубических фторидных пирохлоров индия(III) и галлия(III) // Вестн. ДВО РАН. 2023. № 6. С. 45–54. http://dx.doi.org/10.37102/0869-7698_2023_232_06_4.

Благодарности. Авторы благодарят старшего инженера Л.В. Теплухину за съемку дифрактограмм.

Финансирование. Работа выполнена в рамках государственного задания № 0265-2022-0001 Института химии ДВО РАН.

Original article

A new method of receiving cubic fluoride pyrochlores of indium(III) and gallium(III)

R.L. Davidovich, V.B. Logvinova, E.B. Merkulov, E.I. Voit

Ruven L. Davidovich

Doctor of Sciences in Chemistry, Professor, Chief Researcher Institute of Chemistry, FEB RAS, Vladivostok, Russia davidovich@ich.dvo.ru, ruven.davidovich@gmail.com http://orcid.org/0000-0002-8473-3580

Vera B. Logvinova

Candidate of Sciences in Chemistry, Researcher Institute of Chemistry, FEB RAS, Vladivostok, Russia logvinova@ich.dvo.ru https://orcid.org/0009-0002-2162-8326

Evgenii B. Merkulov Candidate of Sciences in Chemistry, Senior Researcher Institute of Chemistry, FEB RAS, Vladivostok, Russia merkulov@ich.dvo.ru https://orcid.org/0000-0001-9698-5454

Elena I. Voit Candidate of Sciences in Chemistry, Senior Researcher Institute of Chemistry, FEB RAS, Vladivostok, Russia evoit@ich.dvo.ru https://orcid.org/0000-0002-3709-2944

Abstract. A new simple method has been developed for receiving cubic indium(III) and gallium(III) fluoride pyrochlores based on the use of the newly synthesized complex fluorides $Cs[Cu(H_2O)_4]$ InF_6 and $Cs[Cu(H_2O)_4]GaF_6$ as precursors and their dehydration in a static air atmosphere in the temperature range 20–160 °C within 25–30 minutes. The developed method has significant advantages over existing methods for the production of fluoride pyrochlores, using solid-phase reactions of the initial components with their simultaneous fluorination with gaseous F_2 at 450-600 °C for 6–10 hours or interaction of the corresponding mixture of components in sealed silver, platinum or gold tubes in the temperature range of 600–1000 °C for 8–10 days followed by quenching.

- *Keywords:* fluoride pyrochlore, preparation method, complex fluorides, indium(III), gallium(III), dehydration, precursor
- *For citation:* Davidovich R.L., Logvinova V.B., Merkulov E.B., Voit E.I. A new method of receiving cubic fluoride pyrochlores of indium(III) and gallium(III). *Vestnik of the FEB RAS.* 2023;(6):45-54. (In Russ.). http://dx.doi.org/10.37102/0869-7698_2023_232_06_4.

Acknowledgments. The authors thank senior engineer L.V. Teplukhina for taking the diffractograms.

Funding. This work was performed within the state assignment for the Institute of Chemistry, Far East Branch, Russian Academy of Sciences (project N 0265-2022-0001).

Введение

Соединения общей формулы $A^{I}B^{II}M^{III}F_{6}$ ($A^{I} = K$, Rb, Cs; $B^{II} = Cu$, Zn, Ni, Co, Mn, Pd; $M^{III} = Al$, Ga, In, Tl, Sc, Fe, Cr, Ti, V, Mn, Rh) образуют семейство фторидных пирохлоров. Сведения о фторидных пирохлорах индия(III) и галлия(III) ограниченные [1, 2].

Фторидные пирохлоры индия(III) и галлия(III) могут найти применение при изготовлении материалов для электронной промышленности, в качестве матриц для фиксации радионуклидов и индикаторов геохимических процессов.

Большая группа кубических гранецентрированных соединений $AM^{II}M^{III}F_6$ (A = K, Rb, Cs; $M^{II} = Mg$, Ni, Cu, Co, Fe, Mn; $M^{III} = AI$, Ga, Cr, Fe, V) впервые получена в [3] нагреванием стехиометрической смеси фторидов AHF_2 , MF_2 и MF_3 в инертной атмосфере при 600–1000 °C. Определены параметры элементарных ячеек синтезированных соединений, которые аналогичны параметрам минерала пирохлора. Соединения кристаллизуются в кубической сингонии, пространственной группе *Fd*3*m* (Z = 8), структурный тип RbNiCrF₆ [4].

В работе [5] сообщено о получении высокотемпературным синтезом и фторированием образцов газообразным F_2 фторидных пирохлоров $A^IB^{II}M^{III}F_6$ ($A^I = K$, Rb, Cs; $B^{II} = Ag$, Cu; $M^{III} = Al$, Ga, In, Tl, Sc, Fe, Co, Mn, Rh), в том числе фторидных пирохлоров индия(III) CsCuInF₆ и галлия(III) CsCuGaF₆.

Фторидные пирохлоры с катионом Cs⁺ кристаллизуются в кубической сингонии, структурный тип RbNiCrF₆ [4]. Синтезированы и исследованы кубические фторидные пирохлоры типа CsZnMF₆ с трехвалентными катионами M^{III} = Al, Ga, In, TI, Sc, Ti, V, Mn, Cu, Rh [6], CsPdMF₆ с M^{III} = Al, Ga, In, Sc, Fe, Mo, Rh [7] и CsBMF₆ с B = Mn^{II} соответственно Ni^{II} и M^{III} = Ga, Fe, Rh, Sc, In, TI, Rh [8], определены их рентгенографические характеристики.

Результаты рентгеноструктурного монокристального исследования кубических пирохлоров CsMgGaF₆, CsM^{II}V^{III}F₆ (M^{II} = Mn, Zn), CsM^{II}Fe^{III}F₆ (M^{II} = Mn, Cu, Zn) приведены в [9]. Кубические фторидные пирохлоры имеют кристаллическую структуру, аналогичную структуре пирохлора, образованную из октаэдрических групп M₂F₆, связанных вершинами в трехмерную сеть.

Кубические фторидные пирохлоры получают высокотемпературным твердофазным синтезом. Хотя условия получения отдельных групп фторидных пирохлоров незначительно различаются, общим для них является проведение твердофазной реакции при высоких температурах с применением газообразного фтора и фтористого водорода в качестве фторирующих агентов.

Соединения CsZnAIF₆, CsZnGaF₆, CsZnInF₆, CsZnTlF₆ и CsZnScF₆ получены фторированием газообразным F₂ тщательно растертой смеси CsCl, ZnF₂ и MF₃ при ~500 °C в течение 6–8 ч, а соединения CsZnTiF₆, CsZnVF₆, CsZnMnF₆ и CsZnRhF₆ – закаливанием аналогичной смеси компонентов при 400–700 °C в течение 2–10 дней в запаянной золотой трубке [6].

Кубические фторидные пирохлоры CsMgGaF₆, CsM^{II}V^{III}F₆ (M^{II} = Mn, Zn), CsM^{II}Fe^{III}F₆ (M^{II} = Mn, Cu, Zn) для проведения рентгеноструктурных исследований были синтезированы твердофазной реакцией из бинарных фторидов [9]. Эквимольное отношение плотно растертых компонентов сначала нагревали в открытой платиновой ампуле при 150–200 °C в токе HF в течение нескольких часов и затем после сварки ампулы длительное время закаливали (8 дней по 12 ч при 600–1000 °C). Затем медленно снижали температуру (5–50 °/ч) и по достижении 400 °C быстро охлаждали [9].

Целью исследования являлась разработка нового метода получения кубических фторидных пирохлоров индия(III) и галлия(III), который использовал бы более низкие температуры синтеза, исключал применение токсичных фторирующих реагентов и упростил процесс проведения реакции. Эта цель достигнута применением в качестве прекурсоров для получения фторидных пирохлоров индия(III) и галлия(III) впервые синтезированных и структурно исследованных комплексных фторидов Cs[Cu(H₂O)₄]InF₆ и Cs[Cu(H₂O)₄]GaF₆, которые подвергали дегидратации в статических условиях воздуха в интервале температур 20–160 °C в течение 25–30 мин.

Экспериментальная часть

Синтез. Исходными веществами для синтеза фторидных пирохлоров In(III) и Ga(III) служили комплексные фториды $Cs[Cu(H_2O)_4]InF_6$ и $Cs[Cu(H_2O)_4]GaF_6$, синтезированные путем взаимодействия MF (M – Rb, Cs, NH₄), $CuF_2 \cdot 2H_2O$ и $InF_3 \cdot 3H_2O$ и $GaF_3 \cdot 3H_2O$ соответсвенно (реактивы марки ч.д.а. «Химреактив») в водном растворе HF (40 % «Химреактив») при мольных отношениях компонентов 2–3:1:1. Полученные растворы упаривали на водяной бане до небольшого объема и оставляли для изотермической кристаллизации при комнатной температуре. Образовавшиеся кристаллические осадки отделяли от маточного раствора фильтрованием под вакуумом, промывали небольшим количеством охлажденной воды и сушили на воздухе в течение нескольких часов [10].

Рентгенографические исследования. Дифрактограммы порошков исходных соединений и полученных продуктов дегидратации снимали на рентгеновском дифрактометре STOE STADI Р по стандартной методике. Индивидуальность полученных соединений устанавливали методами рентгенофазового анализа путем сравнения их экспериментальных дифрактограмм с теоретической рентгенограммой структуры Cs[Cu(H₂O)₄]InF₆ (CIF файл ICSD номер 433130), а также методом ИК спектроскопии. Теоретическую рентгенограмму Cs[Cu(H₂O)₄]InF₆ рассчитывали с помощью программы VESTA-3 [11]. Данные для расчета взяты из CIF файла структуры соединения Cs[Cu(H₂O)₄]InF₆ (ICSD номер 433130).

ИК спектроскопия. ИК спектры исходных веществ и полученных продуктов дегидратации зарегистрированы на спектрометре SHIMADZU IRTracer-100 с приставкой НПВО Quest в диапазоне 390–4000 см⁻¹ с разрешением 2 см⁻¹ с поликристаллических образцов.

Термогравиметрическое исследование. Термогравиметрическое исследование соединений Cs[Cu(H₂O)₄]InF₆ и Cs[Cu(H₂O)₄]GaF₆ проводили на дериватографе Q1500 в открытом платиновом тигле. Масса навески соединений составляла ~400 мг, скорость нагревания 5 °С/мин. Образцы для рентгенофазового анализа и ИК спектроскопии продуктов дегидратации исходных соединений получены нагреванием 200 мг вещества при 110 °С до прекращения изменения массы (85–90 мин). Убыль массы совпадала с данными термогравиметрического исследования.

Результаты и обсуждение

В работе [10] описаны впервые синтезированные комплексные фториды индия(III) со смешанными катионами щелочных металлов, аммония и двухвалентным катионом $[Cu(H_2O)_4]^{2+}$ состава $M[Cu(H_2O)_4]InF_6 \cdot nH_2O$ (n = 0, 1) $(M - Rb (I), Cs (II), NH_4 (III))$ и исследованы их кристаллические структуры, имеющие полимерное цепочечное строение. Соединение III кристаллизуется в триклинной сингонии, пр. гр. P1, а соединения I и II образуют моноклинные кристаллы, относящиеся соответственно к пр. гр. P2,/с и C2/с. Соединения I-III имеют одинаковую кристаллическую структуру, образованную соответственно катионами Rb⁺, Cs⁺ и NH₄⁺, комплексными катионами [Cu(H₂O)₄]²⁺, слегка искаженными октаэдрическими комплексными анионами [InF₆]³⁻ и молекулами кристаллизационной H₂O. Координационно ненасыщенные катионы [Cu(H₂O)₄]²⁺, присоединяя по одному атому F от соседних InF₆ групп, формируют искаженные октаэдрические группы $Cu(H_2O)_4F_2$. Посредством мостиковых атомов F катионы $[Cu(H_2O)_4]^{2+1}$ и анионы [InF₆]³⁻ поочередно объединяются в анионные зигзагообразные полимерные цепи $\{-F-Cu(H_2O)_4-F-InF_4-F-Cu(H_2O)_4-F-\}^{-\infty}$, являющиеся основой кристаллических структур полученных соединений. Фрагмент анионной полимерной цепи в структурах I-III представлен на рис. 1.

Рис. 1. Фрагмент кристаллической структуры Cs[Cu(H₂O)₄]InF₆

Анализ синтезированных комплексных соединений индия(III) и галлия(III) со смешанными одновалентными и двухвалентным катионом $Cu(H_2O)_4^{2+}$ показал, что их состав без учета координированных и кристаллизационных молекул H_2O сходен с составом фторидных пирохлоров. Предположили, если удалить молекулы

 H_2O из координационной сферы катиона $Cu(H_2O)_4^{2+}$ и при этом соединения не будут разлагаться, то должны образоваться безводные соединения, по составу сходные с составом фторидных пирохлоров.

Для проверки сделанного предположения выбраны соединения $Cs[Cu(H_2O)_4]$ InF₆ (1) и $Cs[Cu(H_2O)_4]GaF_6$ (2), так как большинство полученных фторидных пирохлоров являются соединениями с катионом Cs^+ . Дифрактограммы исход-

Рис. 2. Дифрактограммы исходных соединений: a – теоретическая Cs[Cu(H₂O)₄]InF₆, δ – экспериментальная Cs[Cu(H₂O)₄]InF₆, ϵ – экспериментальная Cs[Cu(H₂O)₄]GaF₆

ных соединений $Cs[Cu(H_2O)_4]InF_6$ и $Cs[Cu(H_2O)_4]GaF_6$, а также теоретическая рентгенограмма структуры $Cs[Cu(H_2O)_4]InF_6$ (СІГ файл ICSD N° 433130) приведены на рис. 2. По результатам рентгенографического исследования комплексное соединение $Cs[Cu(H_2O)_4]GaF_6$ изотипно $Cs[Cu(H_2O)_4]InF_6$ [10].

ИК спектры изотипных соединений Cs[Cu(H₂O)₄]InF₆ и Cs[Cu(H₂O)₄] GaF₆ идентичны (рис. 3, *a*, δ). В спектре Cs[Cu(H₂O)₄]InF₆ наблюдаются полосы валентных и деформационных колебаний молекул H₂O при 3095 и 1564 см⁻¹ соответственно, входящих в состав катиона [Cu(H₂O)₄]²⁺. Хорошо выражены в ИК спектре Cs[Cu(H₂O)₄]InF₆ либра-

ционные колебания молекул воды с максимумами при 786 и 656 см⁻¹, что подтверждает образование прочных водородных связей в структуре. В ИК спектре $Cs[Cu(H_2O)_4]GaF_6$ аналогичные полосы лежат при 3102, 1558, 790 и 662 см⁻¹. Ниже по частоте в ИК спектре $Cs[Cu(H_2O)_4]InF_6$ проявляются две полосы с максимумами при 464 и 401 см⁻¹, отвечающие асимметричным растяжениям связей In–F аниона $[InF_6]^{3-}$. Интенсивность последней полосы усилена вкладом валентного колебания v_{as} Си–О катиона. В ИК спектре $Cs[Cu(H_2O)_4]GaF_6$ аналогичные полосы лежат немного выше по частоте при 485, 422 см⁻¹, что обусловлено более проч-

Рис. 3. ИК спектры: $a - Cs[Cu(H_2O)_4]InF_6$, $\delta - Cs[Cu(H_2O)_4]GaF_6$

ными связями Ga—F в ионе $[GaF_6]^3$ - по сравнению со связями In—F в $[InF_6]^3$ -.

Предварительные термические $Cs[Cu(H_2O)_4]InF_6$ исследования И $Cs[Cu(H_2O)_4]GaF_6$ на дериватографе показали, что дегидратация соединений протекает в интервале температур 80-140 °С и что в результате удаления молекул Н₂О из исходных соединений образуются безводные соединения, о чем свидетельствуют результаты рентгенографического и ИК спектроскопического анализа образовавшихся остатков дегидраташии.

Характер термогравиметрического поведения исходных соединений 1 и 2 представлен на рис. 4, *a*, *b*. Дегидратация соединений 1 и 2 происходит в одну стадию: $Cs[Cu(H_2O)_4]InF_6$ начинается при 80 °C, $Cs[Cu(H_2O)_4]GaF_6$ – при 100 °C. На дериватограммах соединений 1 и 2 глубокие эндотермические эффекты в интервале температур 100–160 °C с максимумом при 140 °C связаны с удалением из координированных атомом Си четырех молекул воды. Экспериментально найденная в указанном температурном интервале убыль массы соединений 1 и 2, соответствующая этим эффектам, равна 14,7 и 16,2 % соответственно, что согласуется с расчетными значениями убыли массы для четырех молекул H_2O из соединений 1 и 2 в 14,45 и 15,93 % соответственно.

Рис. 4. Дериватограммы: $a - Cs[Cu(H_2O)_4]InF_6$, $\delta - Cs[Cu(H_2O)_4]GaF_6$

На кривых убыли массы дериватограмм исследованных соединений 1 и 2 (рис. 4) в области 140–230 °С (после удаления молекул воды) присутствуют площадки, относящиеся к образовавшимся соединениям CsCuInF₆ и CsCuGaF₆, идентифицированным методами рентгенофазового анализа и ИК спектроскопии.

На рисунках 5, 6 приведены теоретические и экспериментальные рентгенограммы продуктов дегидратации исходных соединений $Cs[Cu(H_2O)_4]InF_6$ и $Cs[Cu(H_2O)_4]GaF_6$. На основании сравнения экспериментальных дифрактограмм образцов, полученных дегидратацией соединений $Cs[Cu(H_2O)_4]InF_6$ и $Cs[Cu(H_2O)_4]GaF_6$ при 110 °C в течение 85–90 мин (рис. 5, 6), с теоретическими

Рис. 5. Дифрактограммы CsCuInF₆: a – теоретическая, δ – экспериментальная

Рис. 6. Дифрактограммы CsCuGaF₆: a – теоретическая, δ – экспериментальная

Рис. 7. ИК спектры соединений: $a - \text{CsCuInF}_6$, $\delta - \text{CsCuGaF}_6$

рентгенограммами кубических пирохлоров CsCuInF₆ (CIF файл ICSD 9279, a = 10,62 Å [5]) и CsCuGaF₆ (CIF файл CCDC 7221421, *a*=10,28 Å [3]), а также исходя из результатов дегидратации соединений 1 и 2 (убыль массы) сделано заключение, что образующиеся в результате дегидратации соединений 1 и 2 образцы являются кубическими фторидными пирохлорами CsCuInF₆ и CsCuGaF₆. Образование безводных соединений CsCuInF₆ и CsCuGaF₆ при дегидратации $Cs[Cu(H_2O)_4]InF_6$ и $Cs[Cu(H_2O)_4]GaF_6$ соответственно отражается в их ИК спектрах, в ко-

торых отсутствуют характеристические полосы колебания молекул H₂O (рис. 7, *a*, δ). Интенсивная полоса при 472 см⁻¹ в ИК спектре CsCuInF₆ относится к валентному вырожденному колебанию v_3 октаэдрического аниона [InF₆]³⁻. В ИК спектре CsCuGaF₆ эта полоса лежит при 499 см⁻¹.

Образование соединений CsCuInF₆ и CsCuGaF₆ путем дегидратации Cs[Cu(H₂O)₄]InF₆ и Cs[Cu(H₂O)₄]GaF₆ можно представить следующим образом. Соединения Cs[Cu(H₂O)₄]InF₆ и Cs[Cu(H₂O)₄]GaF₆ имеют полимерное цепочное строение (рис. 1). В полимерной цепи структуры **1** и **2** катионы [Cu(H₂O)₄]²⁺ и анионы [InF₆]³⁻, [GaF₆]³⁻ альтернативно объединяются в анионные зигзагообразные полимерные цепи $\{-F-Cu(H_2O)_4-F-In(Ga)F_4-F-Cu(H_2O)_4-F-\}^{-\infty}$, формирующие кристаллические структуры исходных соединений.

В полимерных цепях структуры 1 и 2 освободившиеся позиции у катионов Cu^{2+} после удаления координированных молекул H_2O занимают атомы F соседних полимерных цепей, и тем самым образуется трехмерная сеть структуры полученных фторидных пирохлоров CsCuInF₆ и CsCuGaF₆.

Заключение

Разработан новый простой метод получения кубических фторидных пирохлоров индия(III) и галлия(III) CsCuInF₆ и CsCuGaF₆ путем дегидратации впервые синтезированных комплексных фторидов Cs[Cu(H₂O)₄]InF₆ и Cs[Cu(H₂O)₄]GaF₆ в статической атомсфере воздуха в интервале температур 20–160 °C в течение 25–30 мин. По сравнению с существующими методами получения фторидных пирохлоров, основанными на высокотемпературном синтезе и фторировании образцов газообразным F₂, разработанный метод имеет существенные преимущества: использует значительно более низкие температуры синтеза, исключает применение токсичных фторирующих реагентов и значительно упрощает процесс проведения реакции. Разработанный метод может быть применен для получения новых фторидных пирохлоров.

На разработанный метод получения фторидных пирохлоров индия CsCuInF₆ или галлия CsCuGaF₆ получен патент (Способ получения фторидных пирохлоров

индия CsCuInF₆ или галлия CsCuGaF₆: пат. № 2781423 РФ / Давидович Р.Л., Логвинова В.Б., Меркулов Е.Б., Войт Е.И., Теплухина Л.В.; заявл. 10.02.2022; опубл. 11.10.2022, Бюл. № 29. 13 с.).

СПИСОК ИСТОЧНИКОВ

1. Davidovich R.L., Fedorov P.P., Popov A.I. Structural chemistry of anionic fluoride and mixed-ligand fluoride complexes of indium(III) // Rev. Inorg. Chem. 2016. Vol. 36, N 3. P 105–133.

2. Davidovich R.L., Fedorov P.P., Popov A.I. Structural chemistry of anionic fluoride and mixed-ligand fluoride complexes of gallium(III) // Rev. Inorg. Chem. 2017. Vol. 37, N 3/4. P. 147–184.

3. Babel D., Pausewang G., Viebahn W. Die Struktur einiger Fluoride, Oxide und Oxidfluoride AMe_2X_6 : Der RbNiCrF₆-Typ // Z. Naturforsch. 1967. T. 22B. S. 1219–1220.

4. Babel D. Die Struktur RbNiCrF $_6$ –Typs und ihre Bezihung zur Pyrochlorstruktur // Z. Anorg. Algem. Chem. 1972. T. 387, N 2. S. 161–178.

5. Hoppe R., Jesse R. Quaternäre Fluoride mit zweiwertigem Kupfer: $M^{I}Cu^{II}M^{II}F_{6}$ (M^I: Cs, Rb, K und M^{II}: Al, Ga, In, TI, Sc, Fe, Co, Mn, Rh) // Z. Anorg. Allg. Chem. 1973. T. 402, N 1. S. 29–38.

6. Jesse R., Hoppe R. Zur Kenntnis des RbNiCrF₆-Typs. III [1, 2] Neue Fluoride des Typs CsZnMF₆ mit M=Al, Ga, In, TI, Sc, Ti, V, Mn, Cu, Rh // Z. Anorg. Allg. Chem. 1977. T. 428, N 1. S. 83–90.

7. Jesse R., Hoppe R. Zur Kenntnis des RbNiCrF₆-Typs, IV [l, 2] Neue Fluoride des Typs CsPdMF₆ mit M = Al, Ga, In und Sc, Fe, Mo, Rh // Z. Anorg. Allg. Chem. 1977. T. 428, N 1. S. 91–96.

8. Jesse R., Hoppe R. Zur Kenntnis des RbNiCrF₆-Typs. V [1, 2, 3] Neue Fluoride CsBMF₆ mit B=Mn^{II} bzw. Ni^{II} und M=Ga, Fe, Rh bzw. Sc, In, TI, Rh // Z. Anorg. Allg. Chem. 1977. T. 428, N 1. S. 97–102.

9. Baum E., Dahlke P., Kaiser V., Molinier M., Schmidt R.E., Pebler J., Massa W., Babel D. On the crystal structure of pyrochlores: Mössbauer spectra of orthorhombic $CsFe_2F_6$ and X-ray single crystal studies of the cubic compounds $CsMgGaF_6$, $CsM^{II}V^{III}F_6$ ($M^{II} = Mn, Zn$), $CsM^{II}Fe^{III}F_6$ ($M^{II} = Mn, Cu, Zn$), and $Cs_4Cu_sV_3O_2F_{19}$ // Z. Anorg. Allg. Chem. 2006. T. 632, N 14. S. 2244–2250.

10. Давидович Р.Л., Удовенко А.А., Логвинова В.Б., Ткачев В.В., Шилов Г.В. Кристаллическая структура новых комплексных фторидов индия(III) $M[Cu(H_2O)_4]InF_6 \cdot nH_2O$ (M = Rb, Cs, NH₄; n = 0, 1) // Журн. структурн. химии. 2018. Т. 59, № 3. С. 674–678.

11. Momma K., Izumi F. VESTA-3 for three-dimensional visualization of crystal, volumetric and morphology data // J. Appl. Crystallogr. 2011. Vol. 44, N 6. P. 1272–1276. DOI: 10.1107/s0021889811038970.

REFERENCES

1. Davidovich R.L., Fedorov P.P., Popov A.I. Structural chemistry of anionic fluoride and mixed-ligand fluoride complexes of indium(III). *Reviews in Inorganic Chemistry*. 2016;36(3):105-133.

2. Davidovich R.L., Fedorov P.P., Popov A.I. Structural chemistry of anionic fluoride and mixed-ligand fluoride complexes of gallium(III). *Reviews in Inorganic Chemistry*. 2017;37(3/4):147-184.

3. Babel D., Pausewang G., Viebahn W. Die Struktur einiger Fluoride, Oxide und Oxidfluoride AMe₂X₆: Der RbNiCrF₆-Typ. Zeitschrift fur Naturforschung. 1967;22B:1219-1220.

4. Babel D. Die Struktur RbNiCrF₆-Typs und ihre Bezihung zur Pyrochlorstruktur. Zeitschrift für Anorganische und Allgemeine Chemie. 1972;387(2):161-178.

5. Hoppe R., Jesse R. Quaternäre Fluoride mit zweiwertigem Kupfer: $M^{I}Cu^{II}M^{III}F_{6}$ (M^I: Cs, Rb, K und M^{III}: Al, Ga, In, TI, Sc, Fe, Co, Mn, Rh). *Zeitschrift für Anorganische und Allgemeine Chemie*. 1973;402(1):29-38.

6. Jesse R., Hoppe R. Zur Kenntnis des RbNiCrF₆-Typs. III [1, 2] Neue Fluoride des Typs CsZn-MF₆ mit M=Al, Ga, In, TI, Sc, Ti, V, Mn, Cu, Rh. *Zeitschrift für Anorganische und Allgemeine Chemie*. 1977;428(1):83-90.

7. Jesse R., Hoppe R. Zur Kenntnis des RbNiCrFd-Typs. IV [1, 2] Neue Fluoride des Typs CsPdMF₆ mit M=A1, Ga, In und Sc, Fe, Mo, Rh. *Zeitschrift für Anorganische und Allgemeine Chemie*. 1977;428(1):91-96.

8. Jesse R., Hoppe R. Zur Kenntnis des RbNiCrF6-Typs. V [1, 2, 3] Neue Fluoride CsBMF₆ mit B = Mn^{II} bzw. Ni^{II} und M = Ga, Fe, Rh bzw. Sc, In, TI, Rh. *Zeitschrift für Anorganische und Allgemeine Chemie*. 1977;428(1):97-102.

9. Baum E., Dahlke P., Kaiser V., Molinier M., Schmidt R.E., Pebler J., Massa W., Babel D. On the crystal structure of pyrochlores: Mössbauer spectra of orthorhombic $CsFe_2F_6$ and X-ray single crystal studies of the cubic compounds $CsMgGaF_6$, $CsM^{II}V^{III}F_6$ ($M^{II} = Mn, Zn$), $CsM^{II}Fe^{III}F_6$ ($M^{II} = Mn, Cu, Zn$), and $Cs_4Cu_sV_3O_2F_{19}$. Zeitschrift für Anorganische und Allgemeine Chemie. 2006;632(14):2244-2250.

10. Davidovich R.L., Udovenko A.A., Logvinova V.B., Tkachev V.V., Shilov G.V. Kristallicheskaya struktura novykh kompleksnykh ftoridov indiya(III) $M[Cu(H_2O)_4]InF_6 \cdot nH_2O$ (M-Rb, Cs, NH_4 ; n=0, 1) = [Crystal structure of new fluoride complexes of indium(III) $M[Cu(H_2O)_4]InF_6 \cdot nH_2O$ (M = Rb, Cs, NH_4 ; n = 0, 1)]. *Zhurnal Strukturnoi Khimii*. 2018;59(3):674-678. (In Russ.).

11. Momma K., Izumi F. VESTA-3 for three-dimensional visualization of crystal, volumetric and morphology data. *Zhurnal Strukturnoi Khimii*. 2011;44(6):1272-1276. DOI: 10.1107/s0021889811038970.

