Вестник ДВО РАН. 2023. № 6

Научная статья УДК 546.831′185:548.75:543.429.23:544.016.2′034 DOI: 10.37102/0869-7698_2023_232_06_9 EDN: IYLTFW

Синтез, строение и особенности протонной подвижности в γ -NH₄Zr(HPO₄)(PO₄)

А.Б. Слободюк[∞], Н.А. Диденко, Е.И. Войт

Арсений Борисович Слободюк кандидат химических наук, старший научный сотрудник Институт химии ДВО РАН, Владивосток, Россия ampy@ich.dvo.ru http://orcid.org/0000-0002-1363-493X

Нина Алексеевна Диденко научный сотрудник Институт химии ДВО РАН, Владивосток, Россия ndidenko@ich.dvo.ru http://orcid.org/0009-0007-4663-4702

Елена Ивановна Войт кандидат химических наук, старший научный сотрудник Институт химии ДВО РАН, Владивосток, Россия evoit@ich.dvo.ru http://orcid.org/0000-0002-3709-2944

- Аннотация. Проведено комплексное исследование соединения γ-NH₄Zr(HPO₄)(PO₄) методами РФА, ТГ-ДТА, ИК и ЯМР (¹H, ³¹P, ВМУ) спектроскопии. Наличие двух типов фосфатных групп в структуре γ-NH₄Zr(HPO₄)(PO₄) подтверждено присутствием характеристических полос в ИК спектре и сигналов в спектре ЯМР ВМУ ³¹P. Методами ИК и ЯМР спектроскопии изучены особенности водородной связи в соединении, установлено наличие независимо протекающих диффузионных движений протонов и сорбированных молекул воды. Методом дифференциального термического анализа исследован процесс разложения соединения.
- *Ключевые слова:* фосфаты циркония(IV), слоистая структура, термические свойства, ИК спектры, ЯМР
- Для цитирования: Слободюк А.Б., Диденко Н.А., Войт Е.И. Синтез, строение и особенности протонной подвижности в γ-NH₄Zr(HPO₄)(PO₄) // Вестн. ДВО РАН. 2023. № 6. С. 105–116. http://dx.doi.org/10.37102/0869-7698_2023_232_06_9.

Финансирование. Работа была выполнена в рамках государственного задания FWFN (0205)-2022-0003 Института химии ДВО РАН.

[©] Слободюк А.Б., Диденко Н.А., Войт Е.И., 2023

Synthesis, structure and proton mobility in γ -NH₄Zr(HPO₄)(PO₄)

A.B. Slobodyuk, N.A. Didenko, E.I. Voit

Arseniy B. Slobodyuk Candidate of Sciences in Chemistry, Senior Researcher Institute of Chemistry, FEB RAS, Vladivostok, Russia ampy@ich.dvo.ru http://orcid.org/0000-0002-1363-493X

Nina A. Didenko Researcher Institute of Chemistry, FEB RAS, Vladivostok, Russia ndidenko@ich.dvo.ru http://orcid.org/0009-0007-4663-4702

Elena I. Voit Candidate of Sciences in Chemistry, Senior Researcher Institute of Chemistry, FEB RAS, Vladivostok, Russia evoit@ich.dvo.ru http://orcid.org/0000-0002-3709-2944

Abstract. A comprehensive study of the γ -NH₄Zr(HPO₄)(PO₄) compound was carried out by XRD, TG-DTA, IR and NMR (¹H, ³¹P, MAS) spectroscopy. The presence of two types of phosphate groups in the structure of γ -NH₄Zr(HPO₄)(PO₄) is confirmed by the observation of characteristic bands in the IR spectra and signals in the MAS ³¹P NMR spectra. Using IR and NMR spectroscopy, the features of the hydrogen bond in the compound were studied, and the presence of independently occurring diffusion motions of protons and adsorbed water molecules was established. The decomposition process of the compound was studied by the method of differential thermal analysis.

Keywords: zirconium(IV) phosphates, layered structure, thermal behavior, IR spectra, NMR

- *For citation:* Slobodyuk A.B., Didenko N.A., Voit E.I. Synthesis, structure and proton mobility in γ-NH₄Zr(HPO₄)(PO₄). *Vestnik of the FEB RAS.* 2023;(6):105-116. (In Russ.). http://dx.doi. org/10.37102/0869-7698_2023_232_06_9.
- *Funding.* The work was carried out within the framework of the government assignment, project N FWFN (0205)-2022-0003 of the Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences.

Введение

Слоистые фосфаты циркония(IV) вызывают значительный интерес в течение последних двух десятилетий из-за их потенциального применения в качестве новых материалов, которые могут обладать ионообменными, абсорбционными, разделительными свойствами, ионной проводимостью, а также гетерогенными каталитическими и нелинейно-оптическими свойствами второго порядка [1, 2]. Слоистые фосфаты циркония $Zr(HPO_4)_2 \cdot nH_2O$ (n = 1, 2) характеризуются ионообменными свойствами, заключающимися в замещении протонов кислых фосфатных групп на катионы сорбируемых элементов с образованием кислых или средних солей. Моногидрат $Zr(HPO_4)_2 \cdot H_2O$ с межслоевым расстоянием d = 7,56 Å (α -фаза) и дигидрат $Zr(H_2PO_4)(PO_4) \cdot 2H_2O$ с d = 12,2 Å (γ -фаза) являются «родоначальниками» рядов соединений с различающимися структурами. Октаэдрические группы ZrO_6 и тетраэдрические фосфатные могут быть расположены двумя способами с образованием разных плоских макромолекул, имеющих одинаковый химический состав $[Zr_2(PO_4)_2]^{2n}$, но разное строение [3, 4, 5].

Соли слоистых фосфатов циркония с отношением P/Zr = 2 двух типов с общими формулами M¹ZrH(PO₄)₂ и M₂¹Zr(PO₄)₂ (M¹ = Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, NH₄⁺) существуют как в виде гидратированных соединений с различными гидратными числами, так и в виде соответствующих безводных фаз. Аммониевые производные выгодно отличаются от изоформульных аналогов с одновалентными катионами наличием протонсодержащих групп, которые могут быть возможными участниками протонного обмена в соединении.

Известно, что слоистые фосфаты Zr и Ti состава $M(HPO_4)_2 \cdot nH_2O$ (n = 1, 2) высокой степени кристалличности могут быть получены при предварительном комплексообразовании четырехвалентного металла с HF и последующим медленным разложением фторидокомплекса в присутствии фосфорной кислоты либо путем постепенного удаления HF [6], либо медленным повышением температуры [7]. Также было обнаружено, что моноаммонийная форма γ -ZrP, обладающая высокой степенью кристалличности, может быть получена растворным методом в присутствии ионов фтора [8, 9]. В [8] для кристаллизации соединения γ -NH₄Zr(HPO₄) (PO₄) водный раствор реакционной смеси ZrOCl₂·8H₂O-NH₄H₂PO₄-HF был выдержан при 80° в течение 5 дней на водяной бане.

В представленной работе с целью уточнения, дополнения, систематизации и обобщения данных о строении, термической устойчивости и характере протонной подвижности в соединении γ -NH₄Zr(HPO₄)(PO₄)(γ -NH₄ZrP) проведено его комплексное исследование методами РФА, ТГ-ДТА, ИК и ЯМР (¹H, ³¹P, MAS) спектроскопии.

Синтез

В настоящем сообщении γ -NH₄ZrP получен через промежуточное разнолигандное фторсодержащее соединение Zr состава NH₄ZrF(HPO₄)₂·4H₂O, синтезированное из водного раствора HF. Кристаллогидрат образуется из реакционной смеси ZrO(NO₃)₂·2H₂O-NH₄F-H₃PO₄-NH₄OH (мольное отношение компонентов соответственно 1:1:3:1) в водном растворе фтористоводородной кислоты при комнатной температуре. Полученное соединение состава NH₄ZrF(HPO₄)₂·4H₂O имеет индивидуальную рентгенограмму (рис. 1, *a*), и его можно рассматривать как продукт присоединения NH₄F и молекул H₂O к кислому фосфату циркония α -Zr(HPO₄)₂·H₂O с однотипными HPO₄-группами в структуре [3, 4]. Наличие на рентгенограмме NH₄ZrF(HPO₄)₂·4H₂O первого дифракционного рефлекса в области 2Θ = 10,74° указывает на слоистую структуру синтезированного соединения (с величиной межслоевого расстояния d = 8,24 Å).

В результате процессов дегидратации и дегидрофторирования исходного соединения $NH_4ZrF(HPO_4)_2 \cdot 4H_2O$ в «мягких» условиях (на воздухе с низкой относительной влажностью 20–30 % при комнатной температуре) образуется, по данным PФА (карта 01-082-2401 C) (рис. 1, δ), соединение γ -NH₄Zr(HPO₄)(PO₄) с известной структурой [9].

Методы исследования

Термическое исследование полученного соединения γ-NH₄ZrP проведено на дериватографе Q-1000 МОМ в атмосфере воздуха при скорости нагревания 5 град/мин. Навеска образца составляла 70 мг. В качестве эталона использован прокаленный Al₂O₂.

Рентгендифракционные данные для соединений были получены на дифрактометрах STOE STADI P (Cu $K_{\alpha 1}$ -излучение, $\lambda = 1,5406$ Å, Ge – монохроматор) и Bruker D8 ADVANCE (Cu K_{α} -излучение, графитовый монохроматор). Для получения информации о составе продуктов использовали банк порошковых данных PDF-2. Рентгенограммы исследованных в рамках данной работы соединений приведены на рис. 1.

ИК спектры получены в области $4000-400 \text{ см}^{-1}$ при комнатной температуре с использованием прибора IR-Affinity на окне *KRS*-5 с образцов, приготовленных в виде суспензии в вазелиновом масле.

Рис. 1. Рентгенограммы соединений NH₄ZrF(HPO₄)₂·4H₂O (*a*), γ -NH₄Zr(HPO₄)(PO₄) (δ) и продуктов нагревания последнего до температур: 600 °C (ϵ) и 900 °C (ϵ)

Спектры ЯМР 1Н, 31Р записывали на спектрометре Bruker Avance AV-300 (300 МГц для ядра ¹Н) в диапазоне температур (150÷420 К) ± 2°. Для записи спектров с вращением образца под магическим углом (ВМУ, v_r = 3-12 кГц) использовали соответствующие датчики и роторы диаметром 4 мм. Ошибка измерения вторых моментов M_{2} (в $\kappa \Gamma \mu^2$) спектров ЯМР не превышала 5 %, а ширины спектральной линии на половине высоты (полуширины Δv , к Γ ц) – 2 %. Химические сдвиги XC, δ (в м.д.) резонансных сигналов в спектрах ЯМР ¹Н измеряли относительно тетраметилсилана с ошибкой 0,1 м.д., в спектрах ${}^{31}P$ – относительно 85 % H₂PO₄ с ошибкой 0,5 м.д. Разложение спектров на компоненты и измерение их интегральных интенсивностей (с ошибкой не выше 5 %) производилось в самостоятельно разработанной программе.

Результаты и их обсуждение

РСА. Соединение γ -NH₄ZrP кристаллизуется в моноклинной сингонии с пр. гр. $P2_1/m$ [9]. Его структура состоит из анионного комплекса [Zr(HPO₄)(PO₄)] слоистого строения и катионов NH₄⁺, межслоевое расстояние составляет 11,33 Å (рис. 2).

Рис. 2. Фрагмент структуры γ -NH₄Zr(HPO₄)(PO₄) по данным [9]

Аналогичное межслоевое расстояние найдено в структуре кристаллогидрата состава γ -Zr(H₂PO₄)(PO₄)·H₂O, полученного при нагревании двухводного гидрата γ -Zr(H₂PO₄)(PO₄)·2H₂O (γ -ZrP, d = 12,41 Å) в интервале температур 30–65 °C [10]. Очевидно, что катионы NH₄⁺ в кристаллической решетке исследуемой γ -NH₄ZrP фазы занимают позиции молекул H₂O в структуре моногидрата γ -Zr(H₂PO₄)(PO₄)·H₂O. Следует отметить, что в слоистой структуре «родоначального» соединения γ -ZrP определено два типа фосфатных групп – одна PO₄³⁻, другая H₂PO₄⁻, – связанных с Zr в более плотные слои, в отличие от α -ZrP, в структуре которого найдены однотипные ионы HPO₄²⁻ [4, 5].

Термический анализ

Приведенные в работах [8, 9] термоаналитические данные для γ -NH₄ZrP являются неполными. При нагревании соединения ТГ (термогравиметрический) анализ показал потерю массы (Δ m) 0,82 % при 150 °C (удаление сорбированной воды) и общую потерю 12,7 % при 1000 °C (образование конечного продукта ZrP₂O₇ с Δ m_{расч} = 11,67 %) [9].

В [8] установлено, что разложение моноаммонийной фазы происходит в две стадии: в области температур 200–400° (удаление одной молекулы NH_3 и 0,7 молекулы H_2O) и при 650–900 °C (удаление 0,3 молекулы H_2O) с образованием кубического ZrP_2O_7 . Авторы предположили, что сначала при конденсации OH-групп образуется слоистый γ-пирофосфат, аналогичный описанному в [11], полученный при разложении γ-Zr(HPO₄)₂·2H₂O (T = 700 °C). Написание формулы H-формы γ-фазы оставлено как в первоисточнике. После 1994 г. γ-ZrP в соответствии с кристаллической структурой имеет формулу γ-Zr(H₂PO₄)(PO₄)·2H₂O. В [8, 11] отмечено также, что в слоистом γ-пирофосфате все еще присутствует большое количество неконденсированных P–OH-групп наряду с частично образованными P–O–P мостиками между слоями.

По данным ТГ-ДТА, полученным в этом исследовании, начало разложения γ-NH₄ZrP отмечается при 250 °C и происходит в две перекрывающиеся стадии с максимальной скоростью при 350 и 390 °С по кривой ДТГ. При этом на кривой ДТА фиксируется широкий малоинтенсивный эндоэффект, переходящий в слаборазрешенный экзоэффект с двумя максимумами при 360 и 390 °C. Из полученных данных следует, что разложение межслоевых катионов NH₄⁺с удалением аммиака из исходного соединения сопряжено по температуре с разложением образующегося кислого фосфата Zr с удалением воды. Кроме того, процессы терморазложения соединений (эндоэффекты) перекрываются процессами кристаллизации (экзоэффекты) образующихся соединений. Убыль массы при 410 °C составляет 9,0 %, что соответствует удалению одной молекулы NH₃ и ~0,5 молекулы H₂O на формульную единицу ($\Delta m_{nacy} = 8,66$ %). При нагревании выше 410 °C происходит постепенная убыль массы без выраженных эффектов на ДТА. Выход летучих продуктов при 800 °C (11,1 %) соответствует удалению молекулы NH, и 0,9 молекулы H_2O ($\Delta m_{pacy} = 11,07$ %). Расчетная величина Δm при образовании ZrP_2O_7 составляет 11,67 %.

Методом РФА установлено, что при нагревании образцов до температуры 600 °С наблюдается образование преимущественно фазы слоистого строения (с межслоевым расстоянием 8,39 Å) с небольшой примесью фазы ZrP_2O_7 . Рентгенограмма полученного продукта (рис. 1, *в*) совпадает с рентгенограммами образцов, полученных нагреванием γ -Zr(HPO₄)₂·2H₂O до T = 550 °C [10] или до T = 700 °C [11]. Во всех случаях конденсация дигидрофосфатных групп в H-форме (ее обозначают как β -Zr(PO₄)(H₂PO₄)) протекает ступенчато через образование частично конденсированного продукта предположительно состава Zr(PO₄)(H₂P₂O₇)_{0,5} по аналогии с изоформульным производным Ti [12]. Монофазный продукт

Таким образом, согласно полученным данным разложение γ-NH₄ZrP на воздухе можно описать последовательностью превращений:

$$\gamma$$
-NH₄Zr(HPO₄)(PO₄) \rightarrow Zr(PO₄)(H₂P₂O₇)_{0.5} \rightarrow ZrP₂O₇(кубич.).

Колебательная спектроскопия

Согласно данным PCA в структуре γ-NH₄ZrP осуществляются межслоевые взаимодействия, в которых фосфатные анионы соединены между собой H-связями (рис. 2). В их образовании участвуют два из четырех атомов O (один как донор H⁺, другой как акцептор) тетраэдра P(2)O₄. Протон распределен между двумя структурно эквивалентными атомами кислорода O(6)...O(6)'[9] и участвует в сильной разупорядоченной H-связи (O...O 2,48 Å).

Сведения о строении исходного γ-NH₄ZrP и продуктов его разложения были получены методами колебательной (ИК) спектроскопии. В спектрах исследуемых соединений проявляются характеристические полосы практически всех функциональных групп (рис. 3).

тетраэдрической Для PO₄группы симметрии Т_д из девяти нормальных колебаний $\Gamma = \nu(A_1,$ v_1 + $\delta(E, v_2)$ + $v(F_2, v_3)$ + $\delta(F_2, v_4)$ B ИК спектре должны быть активны v_3 и v_4 . Присоединение протона киону РО₄³⁻ ведет к образованию иона HPO₄²⁻, локальная симметрия которого всегда ниже тетраэдрической и зависит от ориентации РОН-групп. Расщепление полос в ИК спектрах обсуждаемых соединений в областях 1160-850 (v_2) и 600-300 (v_4) см⁻¹ свидетельствует о снижении локальной симметрии фосфатных тетраэдров.

В ИК спектре γ -NH₄ZrP полосы колебаний катионов NH₄⁺ находятся при 3190, 1429 см⁻¹, что свидетельствует о средней прочности H-связей типа N–H····OP с расстоянием N...О в диапазоне 3,0–2,8 Å, объединяющих катион и анион. Полоса асимметричных валентных колебаний фосфатных групп четко структурирована – заметно ее расщепление на ряд мак-

Рис. 3. ИК спектры γ-NH₄ZrP и продуктов его нагревания до указанных температур. Звездочками отмечена полоса вазелинового масла

симумов (рис. 3). Присутствие двух типов фосфатных групп PO_4^{3-} и HPO_4^{2-} в структуре γ -NH₄ZrP подтверждается наличием двух групп полос. Колебанию v_3 депротонированных ионов PO_4^{3-} отвечает максимум при 1026 см⁻¹ со слаборазрешенными плечами при 1000 и 1036 см⁻¹ [13–15]. Расположенные выше по частоте максимумы 1050, 1066 см⁻¹ ($v_{as}P$ –O) и валентная полоса средней интенсивности ~931 см⁻¹ (vP–OH) указывают на наличие части протонированных ионов HPO_4^{2-} в структуре, что согласуется с данными РСА. Также в ИК спектре проявляются два набора полос деформационных колебаний ~545 пл., 514 см⁻¹ (δ O–P–OH) и ~640, 600 см⁻¹ (δ O–P–O), относящихся к колебаниям ионов HPO_4^{2-} и PO_4^{3-} соответственно.

Положение ИК полосы моды δРОН, зависящей от прочности H-связей, фиксируется при 1226 см⁻¹. Полоса в спектре хорошо очерчена, что можно объяснить организацией однотипных H-связей POH····OP (0...0 2,48 Å) [9].

Продукты разложения γ-NH₄ZrP при нагревании в интервале 600–900 °C

В ИК спектре промежуточного продукта предполагаемого состава $Zr(PO_4)(H_2P_2O_7)_{0,5}$, полученного нагреванием до 600 °C соединения γ -NH₄ZrP, проявляется набор полос валентных колебаний 1189, 1042, 1006, 939 см⁻¹ от двух фосфатных групп в виде ионов PO₄³⁻ и H₂P₂O₇²⁻ (рис. 3). Наличие PO₄³⁻ ионов подтверждается присутствием максимумов полос при 1006 и 638 см⁻¹, относящихся к $v_{as}PO_4(v_3)$ и $\delta_{as}O$ –P–O(v_4) модам соответственно.

При нагревании до 600 °С видно начало образования кислого дифосфатного иона $H_2P_2O_7^{2-}$, валентным колебаниям $v_{as}PO$ его группы HPO₃ соответствует набор ИК полос (1189 с, 1172 пл., 1042 см⁻¹). Лежащая ниже по частоте полоса при 939 см⁻¹ относится к $v_{as}P$ –OH. Колебаниям мостиковой группы v_sP –O–P соответствует полоса 754 см⁻¹. К деформационному колебанию $\delta_{as}O$ –P–OH концевых групп HPO₃ можно отнести малоинтенсивную ИК полосу при 489 см⁻¹. Проявляющиеся колебания группировок HPO₃ и мостика P–O–P в спектре обсуждаемой фазы близки к таковым в спектре соединения [Co($H_2P_2O_7$)₂(H_2O)₂][(CH₃)₃C-NH₃]₂·2H₂O, содержащего ионы $H_2P_2O_7^{2-}$ [16].

С увеличением температуры до 800–850 °С в ИК спектрах продуктов возрастает интенсивность полос от $\text{ZrP}_2O_7(\text{кубич.})$ при одновременном уменьшении интенсивности линий промежуточного конденсированного пирофосфата (рис. 3).

Конечным продуктом нагревания при 900 °С является ZrP₂O₇, полученный спектр соответствует приведенному в работе [17].

ЯМР спектроскопия

Спектр ЯМР ¹Н исследованного соединения при 150 К представляет собой слегка асимметричную гауссову кривую с полушириной ~15 кГц (рис. 4). Широкое основание спектра может быть приближено компонентой пейковской формы с расщеплением ~48 кГц и интенсивностью до 10 %. При температурах выше 220 К наряду с широкой гауссовой компонентой p_1 в спектре можно дополнительно выделить две более узкие компоненты лоренцевой формы p_2 и p_3 (рис. 5, вставка), отвечающие мобильным протонам или протонсодержащим группировкам.

С повышением температуры относительная интенсивность узких компонент возрастает до 10 и 6 %, а ширина уменьшается до 2,6 и 1,9 кГц соответственно, при этом слияния их в один обменный сигнал не происходит. Последнее является достаточно необычным и указывает на наличие двух систем, внутри

Рис. 4. Спектры ЯМР ¹Н γ-NH₄ZrP при различных температурах

каждой из которых отмечается подвижность ионов или молекул, при этом скорость обмена между системами мала. Можно предположить, что, как и для других фосфатов [18-20], для у-NH₄ZrP характерна адсорбция заметного количества воды из атмосферы, а одна из узких компонент отвечает движению сорбированных молекул воды на поверхности частиц образца. Учитывая то, что интенсивность компоненты \mathbf{p}_{2} после прогрева образца до 420 К и охлаждения до комнатной температуры снижается до 4 %, эту

Рис. 5. Температурные изменения второго момента спектра ЯМР 'H γ -NH₄ZrP

компоненту и следует отнести к поверхностным молекулам воды. Присутствие в образце сорбированной воды приводит и к наличию пейковской компоненты в низкотемпературном спектре (см. выше). Вторая узкая компонента соответствует кислым протонам в структуре соединения, находящимся в состоянии диффузии. Ионы аммония в исследованном диапазоне температур согласно полученным данным ЯМР остаются неподвижными.

Изменения второго момента спектра ЯМР ¹Н γ -NH₄ZrP имеют место во всем исследованном диапазоне температур (рис. 5). Отсутствие выхода температурной зависимости на плато при 150 К указывает на наличие в протонной подсистеме соединения движений с крайне низкой энергией активации. Верхняя граница энергии активации, рассчитанная по формуле Уо–Федина [21], составляет менее 0,24 эВ, что ниже этой величины в протонном проводнике α -ZrP [22]. Широкий температурный интервал изменения второго момента указывает на протекание нескольких перекрывающихся диффузионных процессов в диапазоне 150–420 К.

Спектр ЯМР ВМУ ¹Н γ -NH₄ZrP содержит один интенсивный и пару менее интенсивных сигналов при 7,0; 1,2 и 0,8 м.д. соответственно (рис. 6, *A*). Первый из

Рис. 6. Спектры ЯМР ВМУ ¹Н (*A*) и ³¹Р (*B*) γ -NH₄ZrP. Звездочками отмечены боковые полосы от вращения образца ($v_r = 3 \ \kappa \Gamma \mu$). *a* – пики, принадлежащие неидентифицированным примесям, *w* – сорбированной воде

сигналов относится к протонам иона аммония. Сигналов со сдвигом 10–16 м.д. [23, 19], отвечающих обычным сдвигам концевых ОН-групп кислых фосфат-ионов в спектре не наблюдается. В то же время движения с низкой энергией активации в протонной подсистеме соединения свидетельствуют о наличии в нем кислых протонов. В этой связи остается отнести γ-NH₄ZrP к малочисленной и малоисследованной группе соединений, в которых вследствие особенностей водородной связи резонанс протонов гидроксильных групп наблюдается в области более сильного магнитного поля (0,3–7,0 м.д.) [23, 24].

Спектр ЯМР ВМУ ³¹Р γ -NH₄ZrP (рис. 6, *Б*) состоит из пары накладывающихся друг на друга сигналов с XC –32,8 и –33,8 м.д., очевидно, соответствующих двум кристаллографически неэквивалентным позициям атомов фосфора в структуре соединения. Следует отметить, что величина сдвига превосходит ранее наблюдавшиеся сдвиги ЯМР ³¹Р для фосфатов циркония [18–20], а разница между сдвигами ионов РО₄ и HPO₄, напротив, слишком мала.

Выводы

Соединение γ-NH₄ZrP относится к семейству кислых фосфатов циркония, обладающих свойствами протонных проводников и ионообменников. Методами ИК и ЯМР спектроскопии изучены особенности водородной связи и диффузионных движений в соединении. Обнаружено наличие двух независимо протекающих диффузионных процессов, характеризующихся низкой энергией активации ($E_a < 0.24$ эВ). С помощью термического анализа установлено, что процесс разложения γ-NH₄ZrP с удалением аммиака (T = 350 °C) перекрывается разложением образующегося кислого фосфата Zr с удалением воды (T = 390 °C). Выявлено, что конденсация дигидрофосфатных групп в H-форме происходит ступенчато через образование частично конденсированного продукта слоистого строения и конечного ZrP₂O₇ (T = 900 °C). Протекание указанных реакций описывается последовательностью превращений:

 γ -NH₄Zr(HPO₄)(PO₄) \rightarrow Zr(PO₄)(H₂P₂O₇)_{0.5} \rightarrow ZrP₂O₇(кубич.).

СПИСОК ИСТОЧНИКОВ

1. Xiao H., Liu Sh. Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications // Materials and Design. 2018. Vol. 155. P. 19–35. DOI: 10.1016/j.matdes.2018.05.041.

2. Dembitskiy A.D., Aksyonov D.A., Abakumov A.M., Fedotov S.S. NH₄-based frameworks as a platform for designing electrodes and solid electrolytes for Na-ion batteries: A screening approach // Solid State Ionics. 2022. Vol. 374. 115810. DOI: 10.1016/j.ssi.2021. 115810.

3. Clearfield A., Smith G.D.G. The crystallography and structure of α -zirconium bis(monohydrogen orthophosphate) monohydrate // J. Inorg. Chem. 1969. Vol. 8, N 3. DOI: 10.1021/ic50073a005.

4. Albertsson J., Oskarsson A., Tellgren R., Thomas J.O. Inorganic ion exchangers. 10. A neutron powder diffraction study of the hydrogen bond geometry in α -Zr(HPO₄)₂:H₂O. A model for the ion exchange // J. Phys. Chem. 1977. Vol. 81, N 16. P. 1574–1578. DOI: 10.1021/j100531a011.

5. Poojary D.M., Shpeizer B., Clearfield A. X-Ray powder structure and Rietveld refinement of γ -zirconium phosphate, $Zr(PO_4)(H_2PO_4)\cdot 2H_2O$ // J. Chem. Soc., Dalton Trans. 1995. P. 111–113. DOI: 10.1039/DT9950000111.

6. Alberti G., Torracca E. Crystalline insoluble salts of polybasic metals-II. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation // J. Inorg. Nucl. Chem. 1968. Vol. 30, N 1. P. 317–318. DOI: 10.1016/0022-1902(68)80096-X.

7. Alberti G., Costantino U., Giulietti R. Preparation of large crystals of α -Zr(HPO₄)₂·H₂O // J. Inorg. Nucl. Chem. 1980.Vol. 42. P. 1062–1063. DOI: 10.1016/0022-1902(80)80403-9.

8. Alberti G., Bernasconi M.G., Casciola M. Preparation of γ -Zirconium phosphate microcrystals with high degree of crystallinity and proton conductivity of their hydrogen and ammonium forms // React. Polym. 1989. Vol. 11. P. 245–252. DOI: 10.1016/0923-1137(89)90110-3.

9. Poojary D.M., Zhang B., Dong Y., Peng G., Clearfield A. X-ray powder structure of monoammoniumexchanged phase of γ -Zirconium phosphate, Zr(PO₄)(NH₄HPO₄) // J. Phys. Chem. 1994. Vol. 98. P. 13616–13620. DOI: 10.1021/j100102a029.

10. Ginestra A.L., Massucce M.A. Titanium and zirconium acid phosphate dihydrates: thermal behaviour and phase changes of their hydrogen, sodium and strontium forms // Thermochim. Acta. 1979. Vol. 32. P. 241–256. DOI:10.1016/0040-6031(79)85112-6.

11. Costantino U., Ginestra A.L. On the existence of pyrophosphates of tetravalent metals having a layered structure // Thermoch. Acta. 1982. Vol. 58. P. 179–189. DOI: 10.1016/0040-6031(82)87080-9.

12. Andersen A.M.K., Norby P. Structural aspects of the dehydration and dehydroxylation of γ -titanium phosphate, γ -Ti(PO₄)(H₂PO₄)·2H₂O // Inorg. Chem. 1998. Vol. 37. P. 4313–4320. DOI: 10.1021/ic9801894.

13. Печковский В.В., Мельникова Р.Я., Дзюба Е.Д., Баранникова Т.И., Никанович М.В. Атлас инфракрасных спектров фосфатов. Ортофосфаты. М.: Наука, 1981. 248 с.

14. Syed K.A., Pang S.F., Zhang Y., Zhang Y.H. Micro-Raman observation on the H_2PO_4 -association structures in a supersaturated droplet of potassium dihydrogen phosphate (KH₂PO₄) // J. Chem. Phys. 2013. Vol. 138. 024901. DOI: 10.1063/1.4773585.

15. Tarte P., Rulmont A., Merckaert-Ansay C. Vibrational spectrum of nasicon-like, rhombohedral orthophosphates M¹M^{IV}₂(PO₄)₃// Spectrochim. Acta. 1986. Vol. 42A, N 9. P. 1009–1016. DOI: 10.1016/0584-8539(86)80012-5.

16. Tahiri A.A., Bali B.E., Lachkar M., Wilson C., Bauer D., Haisch Ch. Crystal structure, IR, Raman and UV – Vis studies of $[Co(H_2P_2O_7)_2(H_2O)_2][(CH_3)_3C-NH_3)]_2\cdot 2H_2O$ // Inorg. Chem. Commun. 2021. Vol. 128. 108541. DOI: 10.1016/j.inoche.2021. 108541.

17. Petruska E.A., Muthu D.V.S., Carlson S., Krogh Andersen A.M., Ouyang L., Kruger M.B. Highpressure Raman and infrared spectroscopic studies of ZrP_2O_7 // Solid State Commun. 2010. Vol. 150. P. 235–239. DOI: 10.1016/j.ssc.2009.11.022.

18. Слободюк А.Б., Диденко Н.А., Годнева М.М. Исследование строения гидратированных фторофосфатоцирконатов (гафнатов) методом ЯМР // ЖСХ. 2015. Т. 56. С. 1111–1117. DOI: 10.26902/ JSC id39803.

19. Слободюк А.Б., Кавун В.Я., Годнева М.М. Особенности строения кислых фторофосфатоцирконатов (гафнатов) по данным ЯМР ¹⁹F, ³¹P, ¹H // ЖСХ. 2016. Т. 57, № 2. С. 353–358. DOI: 10.15372/ JSC20160214.

20. Слободюк А.Б., Годнева М.М. Строение гидратированных фторофосфатоцирконатов натрия по данным ЯМР // ЖСХ. 2019. Т. 60, № 4. С. 600–608. DOI: 10.26902/JSC id39803.

21. Уо Д., Федин Э.И. О вычислении барьеров заторможенного вращения в твердых телах // Физика твердого тела. 1962. Т. 4. С. 2233.

22. Colodrero R.M.P., Olivera-Pastor P., Cabeza A., Bazaga-García M. Properties and applications of metal phosphates and pyrophosphates as proton conductors // Materials. 2022. Vol. 15. 1292. DOI: 10.3390/ma15041292.

23. Yesinowski J.P., Eckert H. Hydrogen environments in calcium phosphates: proton MAS NMR at high spinning speeds // J. Amer. Chem. Soc. 1987. Vol. 109, N 21. P. 6274–6282. DOI: 10.1021/ja00255a009.

24. Hunger M. Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites // Solid State Nucl. Magn. Resonance. 1996. Vol. 6, N 1. P. 1–29. DOI: 10.1016/0926-2040(95)01201-X.

REFERENCES

1. Xiao H., Liu Sh. Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications. *Materialsand Design*. 2018;155:19-35. DOI: 10.1016/j.matdes.2018.05.041.

2. Dembitskiy A.D., Aksyonov D.A., Abakumov A.M., Fedotov S.S. NH₄-based frameworks as a platform for designing electrodes and solid electrolytes for Na-ion batteries: A screening approach. *Solid State Ionics.* 2022;374. 115810. DOI: 10.1016/j.ssi.2021.115810.

3. Clearfield A., Smith G.D.G. The crystallography and structure of α -zirconium bis(monohydrogen orthophosphate) monohydrate. *Journal Inorganic Chemistry*. 1969;8(3). DOI: 10.1021/ic50073a005.

4. Albertsson J., Oskarsson A., Tellgren R., Thomas J.O. Inorganic ion exchangers. 10. A neutron powder diffraction study of the hydrogen bond geometry in α -Zr(HPO₄)₂·H₂O. A model for the ion exchange. *Journal of Physical Chemistry*. 1977;81(16):1574-1578. DOI: 10.1021/j100531a011.

5. Poojary D.M., Shpeizer B., Clearfield A. X-Ray powder structure and Rietveld refinement of γ -zirconium phosphate, Zr(PO₄)(H₂PO₄)·2H₂O. *Journal of the Chemical Society, Dalton Transac-tions*.1995:111-113. DOI: 10.1039/DT9950000111.

6. Alberti G., Torracca E. Crystalline insoluble salts of polybasic metals-II. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation. *Journal of Inorganic and Nuclear Chemistry*. 1968;30(1):317-318. DOI: 10.1016/0022-1902(68)80096-X.

7. Alberti G., Costantino U., Giulietti R. Preparation of large crystals of α -Zr(HPO₄)₂·H₂O. *Journal of Inorganic and Nuclear Chemistry.* 1980;42:1062-1063. DOI: 10.1016/0022-1902(80)80403-9.

8. Alberti G., Bernasconi M.G., Casciola M. Preparation of γ -Zirconium phosphate microcrystals with high degree of crystallinity and proton conductivity of their hydrogen and ammonium forms. *Reactive Polymers*. 1989;11:245-252. DOI: 10.1016/0923-1137(89)90110-3.

9. Poojary D.M., Zhang B., Dong Y., Peng G., Clearfield A. X-ray powder structure of monoammonium-exchanged phase of γ -Zirconium phosphate, Zr(PO₄)(NH₄HPO₄). Journal of Physical Chemistry. 1994;98:13616-13620. DOI: 10.1021/j100102a029.

10. Ginestra A.L., Massucce M.A. Titanium and zirconium acid phosphate dihydrates: thermal behaviour and phase changes of their hydrogen, sodium and strontium forms. *Thermochimica Acta*. 1979;32:241-256. DOI: 10.1016/0040-6031(79)85112-6.

11. Costantino U., Ginestra A.L.On the existence of pyrophosphates of tetravalent metals having a layered structure. *Thermochimica Acta*. 1982;58:179-189. DOI: 10.1016/0040-6031(82)87080-9.

12. Andersen A.M.K., Norby P. Structural aspects of the dehydration and dehydroxylation of γ -titanium phosphate, γ -Ti(PO₄)(H,PO₄)·2H₂O. *Inorganic Chemistry*: 1998;37:4313-4320. DOI: 10.1021/ic9801894.

13. Pechkovskiy V.V., Melnikova R.Ya., Dzuba E.D., Barannikova T.I., Nikanovich M.V. Atlas infrakrasnyikh spektrov fosfatov. Ortofosfatyi. M.: Nauka; 1981. 248 s. (In Russ.)

14. Syed K.A., Pang S.F., Zhang Y., Zhang Y.H. Micro-Raman observation on the H_2PO_4 -association structures in a supersaturated droplet of potassium dihydrogen phosphate (KH₂PO₄). *Journal of Chemical Physics*. 2013;138. 024901. DOI: 10.1063/1.4773585.

15. Tarte P., Rulmont A., Merckaert-Ansay C. Vibrational spectrum of nasicon-like, rhombohedral orthophosphates $M^{I}M^{IV}_{2}(PO_{4})_{3}$. *Spectrochimica Acta.* 1986;42A(9):1009-1016. DOI: 10.1016/0584-8539(86)80012-5.

16. Tahiri A.A., Bali B.E., Lachkar M., Wilson C., Bauer D., Haisch Ch. Crystal structure, IR, Raman and UV – Vis studies of $[Co(H_2P_2O_7)_2(H_2O)_2][(CH_3)_3C-NH_3)]_2$ ·2H₂O. *Inorganic Chemistry Communication*. 2021;128. 08541. DOI: 10.1016/j.inoche.2021.108541.

17. Petruska E.A., Muthu D.V.S., Carlson S., Krogh Andersen A.M., Ouyang L., Kruger M.B. Highpressure Raman and infrared spectroscopic studies of ZrP₂O₇. *Solid State Communications*. 2010;150:235-239. DOI: 10.1016/j.ssc.2009.11.022.

18. Slobodyuk A.B., Didenko N.A., Godneva M.M. An NMR study of the structure of hydrated fluorophosphatozirconates (hafnates). *Journal of Structural Chemistry*. 2015;56(6):1063-1069. DOI: 10.1134/S0022476615060062.

19. Slobodyuk A.B., Kavun V.Y., Godneva M.M. Structural features of acidic fluorophosphatozirconates (hafnates) from the ¹⁹F, ³¹P, ¹H NMR data. *Journal of Structural Chemistry*. 2016;57(2):338-344. DOI: 10.1134/S0022476616020141.

20. Slobodyuk A.B., Godneva M.M. The structure of hydrated sodium fluorophosphatozirconates according to NMR data. *Journal of Structural Chemistry*. 2019;60(4):575-582. DOI: 10.1134/ S0022476619040085.

21. Waugh J.S., Fedin E.I. Determination of hindered-rotation barriers in solids. *Soviet Physics, Solid State.* 1963;4:1633-1637.

22. Colodrero R.M.P., Olivera-Pastor P., Cabeza A., Bazaga-García M. Properties and applications of metal phosphates and pyrophosphates as proton conductors. *Materials*. 2022;15. 1292. DOI: 10.3390/ma15041292.

23. Yesinowski J.P., Eckert H. Hydrogen environments in calcium phosphates: proton MAS NMR at high spinning speeds. *Journal of the American Chemical Society*. 1987;109(21):6274-6282. DOI: 10.1021/ja00255a009.

24. Hunger M. Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. *Solid State Nuclear Magnetic Resonance*. 1996;6(1):1-29. DOI: 10.1016/0926-2040(95)01201-X.